Mount Sinai researchers developed an AI model to make individualized treatment recommendations for atrial fibrillation (AF) patients—helping clinicians accurately decide whether or not to treat them with anticoagulants (blood thinner medications) to prevent stroke, which is currently the standard treatment course in this patient population. This model presents a completely new approach for how clinical decisions are made for AF patients and could represent a potential paradigm shift in this area.
New AI model accurately identifies which atrial fibrillation patients need blood thinners to prevent stroke
Tech News
-
Highlights
Free Dark Web Monitoring Stamps the $17 Million Credentials Markets
-
Highlights
Smart buildings: What happens to our free will when tech makes choices for us?
-
Apps
Screenshots have generated new forms of storytelling, from Twitter fan fiction to desktop film
-
Highlights
Darknet markets generate millions in revenue selling stolen personal data, supply chain study finds
-
Security
Privacy violations undermine the trustworthiness of the Tim Hortons brand
-
Featured Headlines
Why Tesla’s Autopilot crashes spurred the feds to investigate driver-assist technologies – and what that means for the future of self-driving cars