The field of machine learning is traditionally divided into two main categories: “supervised” and “unsupervised” learning. In supervised learning, algorithms are trained on labeled data, where each input is paired with its corresponding output, providing the algorithm with clear guidance. In contrast, unsupervised learning relies solely on input data, requiring the algorithm to uncover patterns or structures without any labeled outputs.
Self-supervised machine learning adapts to new tasks without retraining
Tech News
-
Free Dark Web Monitoring Stamps the $17 Million Credentials Markets
-
Smart buildings: What happens to our free will when tech makes choices for us?
-
Screenshots have generated new forms of storytelling, from Twitter fan fiction to desktop film
-
Darknet markets generate millions in revenue selling stolen personal data, supply chain study finds
-
Privacy violations undermine the trustworthiness of the Tim Hortons brand
-
Why Tesla’s Autopilot crashes spurred the feds to investigate driver-assist technologies – and what that means for the future of self-driving cars