Federated learning was devised to solve the problem of difficulty in aggregating personal data, such as patient medical records or financial data, in one place. However, during the process where each institution optimizes the collaboratively trained AI to suit its own environment, a limitation arose: The AI became overly adapted to the specific institution’s data, making it vulnerable to new data.
Federated learning AI developed for hospitals and banks without personal information sharing
Tech News
-
HighlightsFree Dark Web Monitoring Stamps the $17 Million Credentials Markets
-
HighlightsSmart buildings: What happens to our free will when tech makes choices for us?
-
AppsScreenshots have generated new forms of storytelling, from Twitter fan fiction to desktop film
-
HighlightsDarknet markets generate millions in revenue selling stolen personal data, supply chain study finds
-
SecurityPrivacy violations undermine the trustworthiness of the Tim Hortons brand
-
Featured HeadlinesWhy Tesla’s Autopilot crashes spurred the feds to investigate driver-assist technologies – and what that means for the future of self-driving cars

