Large language models (LLMs) sometimes learn the wrong lessons, according to an MIT study. Rather than answering a query based on domain knowledge, an LLM could respond by leveraging grammatical patterns it learned during training. This can cause a model to fail unexpectedly when deployed on new tasks.
LLMs use grammar shortcuts that undermine reasoning, creating reliability risks
Tech News
-
HighlightsFree Dark Web Monitoring Stamps the $17 Million Credentials Markets
-
HighlightsSmart buildings: What happens to our free will when tech makes choices for us?
-
AppsScreenshots have generated new forms of storytelling, from Twitter fan fiction to desktop film
-
HighlightsDarknet markets generate millions in revenue selling stolen personal data, supply chain study finds
-
SecurityPrivacy violations undermine the trustworthiness of the Tim Hortons brand
-
Featured HeadlinesWhy Tesla’s Autopilot crashes spurred the feds to investigate driver-assist technologies – and what that means for the future of self-driving cars

